FRACTIONAL FACTORIAL DESIGNS WITH ADMISSIBLE SETS OF CLEAR TWO-FACTOR INTERACTIONS

by

Huaiqing Wu, Robert Mee, and Boxin Tang
Iowa State University, University of Tennessee, and Simon Fraser University

November 11, 2008

ABSTRACT

We consider the problem of selecting two-level fractional factorial designs that allow joint estimation of all main effects and some specified two-factor interactions (2fi’s) without aliasing from other 2fi’s. This problem is to find, among all 2^{m-p} designs with given m and p, those resolution IV designs whose sets of clear 2fi’s contain the specified 2fi’s as subsets. A 2fi is clear if it is not aliased with any main effect or any other 2fi. We use a linear graph to represent the set of clear 2fi’s for a resolution IV design, where each line connecting two vertices represents a clear 2fi between the two vertices. We call a 2^{m-p} resolution IV design admissible if its graph is not a real subgraph of any other graphs of 2^{m-p} resolution IV designs. We show that all even resolution IV designs are inadmissible. In fact, the number of admissible designs is much smaller than the number of non-isomorphic designs. This leads to a concise catalog of all admissible designs of 32 and 64 runs. We also use an algorithm to determine all admissible 128-run resolution IV designs, but only provide some representative designs here.